A global process-based study of marine CCN trends and variability

نویسندگان

  • E. M. Dunne
  • S. Mikkonen
  • H. Kokkola
  • H. Korhonen
چکیده

Low-level clouds have a strong climate-cooling effect in oceanic regions due to the much lower albedo of the underlying sea surface. Marine clouds typically have low droplet concentrations, making their radiative properties susceptible to changes in cloud condensation nucleus (CCN) concentrations. Here, we use the global aerosol model GLOMAP to investigate the processes that determine variations in marine CCN concentrations, and focus especially on the effects of previously identified wind speed trends in recent decades. Although earlier studies have found a link between linear wind speed trends and CCN concentration, we find that the effects of wind speed trends identified using a dynamic linear model in the Northern Equatorial Pacific (0.56 m s per decade in the period 1990–2004) and the North Atlantic (−0.21 m s per decade) are largely dampened by other processes controlling the CCN concentration, namely nucleation scavenging and transport of continental pollution. A CCN signal from wind speed change is seen only in the most pristine of the studied regions, i.e. over the Southern Ocean, where we simulate 3.4 cm and 0.17 m s increases over the 15-year period in the statistical mean levels of CCN and wind speed, respectively. Our results suggest that future changes in wind-speed-driven aerosol emissions from the oceans can probably have a climate feedback via clouds only in the most pristine regions. On the other hand, a feedback mechanism via changing precipitation patterns and intensities could take place over most oceanic regions, as we have shown that nucleation scavenging has by far the largest absolute effect on CCN concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of spatial and temporal variations in aerosol properties on mean cloud albedo

[1] The mean cloud albedo over a spatial or temporal domain depends not only on the mean cloud condensation nucleus (CCN) spectrum but also on the CCN spectrum variation. When the variation of CCN spectrum is neglected, cloud albedo calculated using the mean CCN spectrum is positively biased. The CCN spectrum variation due to either variation in size distribution or chemical composition, as wel...

متن کامل

Global distribution of the effective aerosol hygroscopicity parameter for CCN activation

In this study we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) model to simulate global fields of the effective hygroscopicity parameter κ which approximately describes the influence of chemical composition on the cloud condensation nucleus (CCN) activity of aerosol particles. The obtained global mean values of κ at the Earth’s surface are 0.27±0.21 for continental and 0.72±0.24 for marine r...

متن کامل

Future research and presentation of quality development trends in public universities in Tehran: Based on the approach of the world-class university

 Introduction: A brief study of the evolution of higher education in Iran and how universities and higher education centers have expanded shows that the process of university planning is not being considered. The purpose of this study is to design and validate the future research model of qualitative development trends of public universities in Tehran based on the university's approach at the g...

متن کامل

Global Distribution and Climate Forcing of Marine Organic Aerosol: 1. Model Improvements and Evaluation

Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)’s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory’s 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isopreneand monoterpenes-derived secondary organic aerosols (SOA) and meth...

متن کامل

Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth’s radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014